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Abstract

In recent years, the growing prevalence of mental health issues and emotional
disorders —partly associated with remote work and social isolation—has led to
increased interest in Facial Emotion Recognition (FER) methods as tools for the early
detection of affective disturbances. Assessing the effectiveness of these methods may
support the development of solutions aimed at identifying reduced psychological well-
being among employees, allowing for timely intervention and professional support.

This publication provides a review of the most frequently used FER techniques
based on visible-spectrum imaging systems. The selected methods were implemented
and empirically compared using the publicly available FER-2013 dataset. The analysis
emphasizes key performance parameters and metrological aspects, with particular
attention to their potential applications in psychological, medical, and research settings.
Laboratory tests allowed for the identification of practical strengths and limitations of
each method, offering a basis for considering their integration into mental health
assessment tools and suggesting directions for future research.

Keywords: affective processing, machine vision, emotion recognition, image
processing

Introduction

We live in an era where technological advancement often outpaces our adaptive
capacities, and automation is permeating increasingly intimate aspects of human
experience — including emotions. More and more frequently, we are asking not only
whether it is possible, but whether it is appropriate to technologically measure
something as elusive as human emotional states. When emotions become data and facial
expressions are reduced to clusters of pixels analyzed by algorithms, a deeper reflection
on the boundaries of technological intervention in psychological well-being becomes
essential. One of the most recent and rapidly evolving areas within this domain is Facial
Emotion Recognition, which combines elements of computer science, psychology, and
artificial intelligence. FER has applications in medicine, education, and the workplace —
especially in contexts where direct human contact is limited, as is often the case in remote
work models. In such settings, technology begins to act as an intermediary — not only
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recording, but also potentially interpreting emotional states. The use of FER as a tool to
support the assessment of remote employees’ psychological well-being seems
particularly relevant in light of increasing reports about the emotional consequences of
professional isolation. The key question, however, is not only whether FER works, but
how it works — and whether it works well enough to be trusted in the sensitive area of
mental health.

The aim of this article is to compare selected FER methods — both classical
approaches based on handcrafted feature extraction and modern deep learning
techniques — in terms of their potential usefulness for monitoring emotions in remote
work environments. For this purpose, selected models were analyzed using the publicly
available FER-2013 dataset, which serves as a standard benchmark in emotion
recognition research. This study seeks not only to evaluate the effectiveness of specific
technological approaches but also to reflect on their potential applications in
psychological and organizational practice. By comparing the performance of classical
and deep learning-based FER methods, we examine not only their classification accuracy
but also their robustness to noise, implementation feasibility, operational transparency,
and ethical implications. The following sections present a theoretical overview of
psychological well-being in the context of remote work, a detailed review of FER
methods, a description of the materials and methodology, results of the comparative
analysis, and a critical discussion of the opportunities and limitations of using such tools
to assess employees’ emotional functioning. Special attention is given to the ethical
dimensions of emotional automation — including concerns related to privacy,
surveillance, and cultural diversity.

Psychological Well-Being in the Context of Remote Work

In recent years, there has been a sharp increase in interest in the mental health of
employees, largely driven by the widespread adoption of remote work and the
accompanying social isolation. The COVID-19 pandemic led to a mass transition to
remote work, which, although initially perceived as a temporary solution, has taken on
a long-term character in many organizations. However, numerous studies indicate that
this mode of work can significantly atfect individual psychological well-being. A study
conducted among healthcare workers found that feelings of loneliness and professional
isolation correlate with decreased mental well-being, even in the presence of social
support (O'Hare, 2024: 4). Similarly, Brown and Leite emphasized that the lack of daily
interactions in the professional environment exacerbates stress levels and decreases
employee engagement (Brown & Leite, 2023: 144). Becker et al. demonstrated that a key
risk factor for the psychological well-being of remote workers is low control over tasks,
which contributes to a sense of loneliness (Becker et al., 2022: 453). In light of these
challenges, there is a growing need to implement technological tools that support the
early detection of symptoms related to declining mental well-being and enable timely
preventive and intervention measures.

In order to understand the concept of well-being, it is essential to recognize that
it is a psychological construct rooted in the tradition of positive psychology, which
developed at the turn of the 20th and 21st centuries. Its theoretical grounding in this
perspective implies that it is not limited to the absence of suffering or neutral
functioning, but rather encompasses a qualitative dimension of life experience—
centered on meaning, engagement, interpersonal relationships, and opportunities for
growth. In contrast to the notion of happiness, which is often associated with hedonistic
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pleasure and a transient emotional state, psychological well-being refers to a relatively
stable and multidimensional form of human functioning that integrates both emotional
and existential components (Baes, Speagle & Haslam, 2022: 1-2). The psychological
literature offers numerous models describing well-being, highlighting its complexity
and multidimensional nature. One of the most significant and influential frameworks is
the PERMA model, developed by Martin Seligman, the founder of positive psychology.
This model identifies five core components of well-being: Positive emotions,
Engagement, Relationships, Meaning, and Accomplishment. Each of these elements can
independently affect an individual’s quality of life, and the development of each
contributes to sustained well-being (Seligman, 2011: 47-49). Another notable approach
is Carol Ryff’s six-dimensional model, which adopts a more eudaimonic perspective on
psychological well-being. According to Ryff, well-being is grounded in aspects such as
autonomy, self-acceptance, personal growth, purpose in life, environmental mastery,
and positive relations with others. This model integrates psychological maturity, life
meaning, and relational quality as essential pillars of mental health (Rytf, 1989: 1072-
1075). In the Polish context, a particularly compelling concept is Janusz Czapifiski’s onion
theory of happiness, which — despite its reference to happiness —in essence, describes well-
being. Czapiniski distinguishes three layers: a deep (core) layer based on the biological
will to live, a middle layer involving emotional reactions to everyday experiences, and
an outer layer comprising evaluations of satisfaction with various life domains
(Czapinski, 2004: 19-22). Each of these models offers a unique perspective on the
understanding of well-being, allowing for recognition of its diverse sources and
underlying mechanisms.

An increasing body of research confirms that the well-being of remote workers
constitutes a significant challenge in the modern world of work. By utilizing reliable
diagnostic tools, such as the PERMA Profiler and Carol Ryff’s model of psychological
well-being, researchers are increasingly identifying decreased levels of well-being
among individuals working outside traditional office environments. A study conducted
among lecturers at private universities revealed a marked decline in the quality of
interpersonal relationships, sense of meaning, and autonomy in those operating
exclusively online (Leong, 2022: 19). Similar conclusions were drawn in a study of
employees from various industries, where a comparative analysis of the pre-pandemic
and pandemic periods revealed declines in PERMA components such as positive
emotions, relationships, and accomplishments (Pataki-Bitté & Kun, 2022: 331). These
findings were further confirmed in research on teachers working remotely, who
reported lower well-being scores as measured by the PERMA Profiler, particularly in the
relational and social domains (Berry, 2023: 70). Importantly, this issue is also present in
both technological and industrial sectors. For instance, remote workers in the Finnish IT
sector reported a decrease in engagement and sense of meaning (Lampinen, 2024: 39),
while in South African mining operations, significant deficiencies in relationships and
positive emotions were identified (Kau & Flotman, 2025: 9). Even in more specific
contexts such as the architecture sector, women working remotely reported lower levels
of accomplishment and social connection, both key components of the PERMA model
(Rodriguez-Leudo & Navarro-Astor, 2024: 7). Similar patterns were observed in
multinational corporate environments, where women experienced a diminished sense
of belonging while working remotely (Nozari & Seyedsalehi, 2024: 23).

Studies on well-being also include managerial staff, indicating a strong
correlation between the mode of work and the quality of psychological functioning. The
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highest levels of well-being were observed among individuals working in a hybrid
model, and the lowest among those working fully remotely. Particularly adverse
outcomes were noted among remote leaders in the non-profit sector (Zimnoch, 2024: 53-
59), which may be attributed to the combination of factors such as limited organizational
support, high responsibility with scarce resources, and difficulties in maintaining social
relationships. Given that work modality impacts well-being even at the managerial level,
its influence on lower-level employees— with less autonomy and control over working
conditions—may be even more profound. The breadth of industries examined, the
consistency of findings, and the use of standardized research tools all support the
conclusion that diminished well-being among remote workers is not an isolated
phenomenon but a serious systemic issue.

With the growing prevalence of remote work, the importance of supporting
employee well-being—including for those without daily contact with colleagues or
supervisors—has become increasingly evident. Since monitoring well-being in such
conditions can be challenging, there is a growing interest in new tools that can accurately
and rapidly detect early signs of psychological decline —particularly in the context of
preventing burnout, reduced engagement, or emotional disturbances. One increasingly
popular direction involves the use of emotion recognition technologies, including Facial
Emotion Recognition, as a potential means of assessing the psychological well-being of
remote workers.

Automatic Emotion Recognition (AER) technologies, particularly those based on
FER, are gaining traction in psychological contexts, especially in the fields of mental
health and patient care. As demonstrated in a systematic review of studies from 2013 to
2023, real-time emotion recognition can significantly enhance diagnostic processes,
emotional state monitoring, and therapeutic interventions —both in clinical and home-
based environments (Guo et al., 2024: 5-6). Particularly promising are multimodal
approaches —combining facial analysis, speech, and physiological signals —which move
beyond subjective self-report methods toward more objective and dynamic
measurement tools (Guo et al., 2024: 2-4). In a similar vein, systems employing deep
learning to analyze facial expressions during remote psychological consultations are
being developed to support therapists in making more accurate clinical decisions, thanks
to access to real-time emotional feedback (Hadjar & Hemmje, 2025: 2-3). In the context
of work and organizational psychology, however, the application of FER also raises
important ethical concerns, prompting reflection on the boundaries of emotional

surveillance in the workplace and the need to safeguard employees’ rights (Hajric et al.,
2024: 3-4).

Facial Emotion Recognition: From Classical Approaches to Deep Learning

Facial Emotion Recognition has been at the center of scientific attention since the
1970s, bringing together researchers in nonverbal communication, psychology, and
artificial intelligence. As technology evolved, so too did the methods used to identify
emotions — shifting from classical image analysis techniques based on manually defined
rules and handcrafted features (Aslam & Hussian, 2021: 2-5) to modern deep learning
approaches capable of autonomously learning emotional patterns from large datasets
(Rajan, Chenniappan, & Devaraj, 2020: 1373-1374). This transition has not only improved
recognition accuracy but has also opened new possibilities in areas such as remote
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psychological support, education, healthcare, and well-being monitoring (Hans & Rao,
2021: 11-12). The earliest attempts to automate emotion recognition relied on manual
feature extraction, where experts selected facial elements considered relevant to emotion
expression (Wegrzyn, Vogt, Kireclioglu, & Schneider, 2017: 5). Two dominant strategies
emerged: the geometric approach, which analyzed the positions of key facial landmarks
(e.g., the distance between eyebrows), and the appearance-based approach, which
focused on textures, gradients, and local patterns (Kas, Ruichek, & Messoussi, 2021: 10).

One of the most well-known systems was the Facial Action Coding System
(FACS) developed by Ekman, which decomposed facial expressions into Action Units
(AUs), each corresponding to specific muscle movements. While FACS proved accurate
and useful in psychological research, it required significant resources — including time,
training, and resilience to individual and environmental variability (Kas, Ruichek, &
Messoussi, 2021: 11). Several classical FER methods also had technical implementations.
Haar-like features, introduced by Viola and Jones, analyzed brightness differences
between regions of the image in real time (Viola, 2001: 512). Histograms of Oriented
Gradients (HOG) enabled the detection of edges and shapes in images regardless of
lighting or noise — a breakthrough in object detection (Dalal, 2005: 887-888). Another
important stream involved ensemble methods, such as Bagging and Boosting, which
combined the outputs of multiple classifiers. This approach reduced individual model
errors and improved classification performance (Dietterich, 2000: 1-4). Despite their
many advantages, classical approaches proved difficult to scale. They required expert
knowledge, performed poorly on diverse datasets, and were prone to errors in dynamic
environments.

The development of deep learning (DL) has radically transformed how emotions
are analyzed today. Rather than manually defining where to look for emotions, neural
networks learn these patterns independently — analyzing thousands or even millions of
images. As a result, systems have become more robust to changes in lighting, facial
orientation, and individual appearance. The key to this transformation was the
introduction of Convolutional Neural Networks (CNNs), which analyze images in layers
— from simple patterns to complex emotional configurations (PPalaniswamy, 2019: 2).
Models such as VGGNet (a deep, symmetrical network with small filters), ResNet (a
residual network that learns the differences between layers, allowing for deeper
architectures), and Inception (a complex structure that analyzes data at multiple scales
simultaneously) have become FER standards (He, et al. 2016: 770). In scenarios where
emotions evolve over time — such as during video calls — Recurrent Neural Networks
(RNNSs) and their advanced form, Long Short-Term Memory (LSTM) networks, are used.
These models can "remember" key information while ignoring irrelevant details
(Hochreiter & Schmidhuber, 1997: 1743).

In recent years, hybrid approaches have gained popularity — combining CNNs
with LSTM networks or attention mechanisms, allowing for the capture of both visual
structure and temporal context. Transfer learning has also become significant —
leveraging pre-trained models (e.g., on the ImageNet dataset) and fine-tuning them for
specific tasks, reducing training time and improving performance (Yen & Li, 2022: 4).
Thanks to frameworks such as TensorFlow, PyTorch, and Keras, creating, training, and
deploying DL models has become accessible not only to scientists but also to
practitioners in psychology, medicine, and education (Ismail et al., 2024: 11).
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So why are classical methods still in use if deep learning seems superior? The
answer is context. Classical approaches are faster, cheaper, and easier to implement. In
controlled or educational environments, where high flexibility is not required, they may
be entirely sufficient. Deep learning, on the other hand, is better suited to complex,
dynamic datasets that require high precision — such as psychological diagnostics,
employee well-being assessment, or crisis intervention systems (table 1).

Table 1. Comparison of Classical and Deep Learning Approaches in Facial Emotion

Recognition
Criterion Classical FER Methods Deep Learning Approaches
Feature extraction Manual, expert-driven Automated, learned by the network
Data requirements Low High - requires large datasets
Noise resistance Low High
Result interpretability High Low (“black box™)
Co.m-putauonal Low High - needs GPU/cloud
efficiency
Model preparation time  Short Long (training required)
Applications Education, offline analysis Chm.cal 'use, remote work, mobile apps, well-being
monitoring
Example techniques FACS, Haar, HOG, CNN, ResNet, LSTM, Attention, Transfer Learning

Boosting

Note. Comparison of classical and deep learning approaches to facial emotion recognition, based on the
authors’ comparative analysis.

Understanding the differences between classical and modern FER methods
enables not only a more precise and context-appropriate selection of analytical tools, but
also a more reflective evaluation of their practical applicability, technical limitations, and
underlying assumptions. As technological capabilities continue to evolve, researchers
and practitioners are increasingly faced with the need to align methodological choices
with the specific demands of their domain. This includes considerations such as data
availability, computational resources, interpretability requirements, and time
constraints. Ultimately, the effectiveness of facial emotion recognition depends not
solely on the sophistication of the algorithm, but also on the clarity of its intended use,
the conditions under which it operates, and the ethical standards guiding its
implementation.

Materials and Methods

This study evaluated the effectiveness of selected machine learning and deep
learning models in the context of automatic Facial Emotion Recognition. The FER-2013
dataset was chosen for the experiments, as it is one of the most widely used and broadly
recognized datasets in the scientific community — particularly in studies involving deep
learning-based emotion recognition. Due to its diversity in terms of facial expressions
and image quality, FER-2013 is considered one of the most frequently used benchmarks
in this field (Goodfellow, 2013: 62). The FER-2013 dataset played a key role in the ICML
2013 Challenge, which contributed to its standardization in the evaluation of novel
algorithms (Mollahosseini, 2016: 1). Additionally, it offers a variety of realistic, “in-the-
wild” facial images, making it highly representative and useful for developing systems
intended for real-world applications (Mollahosseini, 2016: 2; Minaee et al., 2021: 5). In
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numerous literature reviews, FER-2013 has been cited as a benchmark standard in
emotion recognition research due to its widespread use and well-established structure
(Li & Deng, 2022: 1195). Its popularity and accessibility make it a natural choice for
testing the effectiveness of modern emotion recognition models.

To compare different approaches to FER, a set of models was selected to
represent both classical and modern deep learning techniques. The models applied in
this study included CNNs (LeCun, et al, 1998: 2283), RNNs (Elman, 1990: 7), their
advanced variant LSTM networks (Hochreiter, 1997: 9), as well as state-of-the-art deep
architectures such as ResNet (He, 2016: 770) and VGGNet (Simonyan, 2015: 2).
Additionally, ensemble methods were included, combining the outputs of multiple
classifiers to enhance prediction accuracy (Dietterich, 2000: 1). Within the scope of
classical emotion recognition methods, feature extraction techniques based on Haar-like
features (Viola & Jones, 2001: 512) and Histograms of Oriented Gradients (Dalal &
Triggs, 2005: 887-888) were applied. Haar-like features enable the rapid detection of local
brightness differences in an image, making them useful for analyzing simple facial
patterns with low computational complexity. This technique employs rectangular masks
that slide across the image, analyzing contrast between selected regions and capturing
typical lighting configurations associated with specific emotional expressions (Viola &
Jones, 2001: 512). HOG, on the other hand, allows for precise analysis of local edges and
contours by computing gradient directions in small segments of the image and
converting them into gradient histograms (Dalal & Triggs, 2005: 888). This method is
known for its robustness to lighting variations, which enhances its applicability in
visually diverse environments.

The study also incorporated ensemble methods as an extension of classical
approaches by combining the outputs of multiple independent classifiers. Techniques
such as Bagging and Boosting (Dietterich, 2000: 1-5) improve prediction stability and
accuracy by reducing variance and increasing model diversity. Through mechanisms
such as voting or weighted prediction averaging, ensemble methods help build more
resilient classification systems, particularly in contexts involving incomplete or
heterogeneous training data.

In the domain of deep learning methods, Convolutional Neural Networks were
applied. These networks consist of convolutional layers, pooling layers, activation
functions (ReLU), and fully connected layers (LeCun et al., 1998: 2283). Each module of
the network plays a critical role in extracting and classifying facial patterns —
convolutional layers process the image locally by filtering features such as edges and
textures, while pooling layers reduce dimensionality and increase the model’s
robustness to spatial distortions. The learning process relies on backpropagation and
weight updates to minimize the loss function. The study also included advanced deep
learning architectures such as VGGNet and ResNet. VGGNet, with its consistent
structure of multiple convolutional layers using small filters (3%3), enables efficient
extraction of complex features while maintaining computational stability and limiting
the number of parameters (Simonyan, 2015: 2-3). Regularization techniques such as
dropout and L2 were implemented to reduce overfitting — a critical factor when
working with limited training datasets. ResNet, in contrast to conventional CNNs,
introduces residual connections that allow information to bypass certain layers without
degradation of the gradient, thereby facilitating the training of very deep networks (He
et al., 2016: 771-773). In addition to spatial analysis, sequential architectures were also
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applied — specifically RNNs and their extended form, LSTM networks. RNNs are
capable of modeling temporally ordered data, which is particularly useful for analyzing
sequences of facial images where changes in emotion over time are key (Elman, 1990:
186). LSTM networks, through the use of memory cells with input, output, and forget
gates, can selectively retain or discard information, enabling the modeling of long-term

dependencies and reducing the vanishing gradient problem (Hochreiter &
Schmidhuber, 1997: 1744).

The selection of methods was based on their documented effectiveness and
compatibility with the FER-2013 dataset. All models were implemented and validated
under consistent conditions, ensuring reliable and comparable results. A comparative
analysis was conducted on six models representing both classical feature-based and

modern deep learning approaches to facial emotion recognition.

Table 2. Summary Comparison of All Evaluated FER Method

A h C tational  Noi
Model pproac om?u atona 0.15e Applications Advantages Limitations
type requirements resistance
L ize,
Psychology, Well- narie S
eeds
VGG16 Deep learning  High (GPU) High healthcare, documented
, transfer
research and effective )
learning
| | | Psychology, H%gh accuracy  Complex and
ResNet Deep learning  High (GPU) Very high , with deep GPU-
adaptive systems )
structures demanding
Vid 1ls, Long-t
Deep learning ~ Medium-high , e cats , ongTEr Challenging
LSTM , Medium temporal emotion  dependency _
(sequential) (GPU) , _ to fine-tune
analysis modeling
Simplified L
Deep learning ~ Medium (GPU _ Dynamic emotion TP ower
RNN (sequential) optional) Medium modelin sequence accuracy than
1 P 5 processing LSTM
lassical i
Classica | Fast offline Transparency, No automatic
HOG feature Low Medium o light- feature
_ classification . . :
extraction Insensitive learning
Haar- Classical Embedded Fast Low
like feature Very low Low systems, processing, effectiveness
features  extraction education simplicity and flexibility

Note. Overview of key characteristics, strengths, and limitations of selected FER models, developed by the

authors.

These models differ not only in architectural complexity but also in their data
requirements, robustness to noise, and interpretability. The following comparison
includes key technical and metrological aspects, allowing for an informed assessment of
each model’s applicability in psychological, educational, and organizational contexts.
The table (table 2) presents the most relevant configuration parameters, distinguishing
features, and potential applications of all the methods analyzed.

One of the analyzed models was a modified VGG16 architecture, based on the
concept presented by Simonyan and Zisserman (Simonyan, 2015: 1), but adapted to the
practical requirements of experiments using the FER-2013 dataset. The introduced
simplifications were aimed at increasing computational efficiency and reducing training
time while preserving the method’s functionality in the context of emotion analysis
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under remote work conditions. The model utilized a transfer learning strategy — freezing
all convolutional layers responsible for feature extraction, while modifying the final
classification layer to match the seven emotion classes present in the FER-2013 dataset.

Table 3. Configuration of the Simplified VGG16 Model Used for FER Tasks

Configuration Element Description

Architecture VGG.1.6 (b.ased on Simonyan & Zisserman, 2015), with
modifications

Approach Transfer learning

Frozen layers Yes (convolutional layers)

Modified final layer Yes - 7 outputs (FER2013 emotion classes)

Input image size 224 x 224 px

Data normalization RGB means and standard deviations from ImageNet

Data split Training: 80%, Validation: 20%

Number of epochs 10

Batch size 32

Optimizer Adam

Learning rate (Ir) 0.0001

Regularization (dropout/L2) Not applied

Loss function CrossEntropyLoss

Evaluation metrics Accuracy, Precision, Recall, F1-score, Confusion Matrix

Note. Configuration details of the simplified VG(G16 architecture tailored for FER, as implemented in this
study.

All images were rescaled to a resolution of 224x224 pixels. The data were
standardized based on the mean and standard deviation values of the RGB channels
used during the original ImageNet training. The dataset was split into a training set
(80%) and a validation set (20%), maintaining class balance. The model was trained for
10 epochs using the Adam optimizer (learning rate of 0.0001) and the CrossEntropyLoss
function. A batch size of 32 was applied. Adam optimizer is an adaptive learning rate
optimization algorithm designed for training deep neural networks. It combines the
advantages of two other popular methods: AdaGrad and RMSProp, by estimating both
the first and second moments of the gradients (Yi, Ahn, & Ji, 2020: 2).No regularization
techniques such as dropout or L2 were used, and no learning rate scheduling was
implemented. These decisions were made to simplify the process and allow for efficient
experimentation under resource constraints. During each epoch, classification accuracy
was monitored on both the training and validation sets. After training was completed,
the model’s performance was evaluated using metrics such as precision, recall, and the
harmonic mean (F1-score). A confusion matrix was also generated to analyze the most
frequent classification errors (table 3).

The second analyzed model was the ResNet architecture (He et al., 2016: 771),
originally designed to address the vanishing gradient problem in very deep neural
networks. In this study, the ResNet-18 version was selected as a compromise between
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network depth and computational efficiency, while maintaining the ability to effectively
extract features from complex facial expressions.

Table 4. Configuration of the Simplified ResNet-18 Model Used for FER Tasks

Configuration Element Description

Architecture ResNet-18 (based on He et al., 2016), adapted for FER tasks
Approach Transfer learning

Frozen layers Yes (convolutional layers)

Modified final layer Yes - 7 outputs (FER2013 emotion classes)

Input image size 224 x 224 px

Data normalization RGB means and standard deviations from ImageNet
Data split Training: 80%, Validation: 20%

Number of epochs 10

Batch size 32

Optimizer Adam

Learning rate (Ir) 0.0001

Regularization (dropout/L2) Not applied

Loss function CrossEntropyLoss

Evaluation metrics Accuracy, Precision, Recall, F1-score, Confusion Matrix

Note. Experimental setup of the ResNet-18 model adapted to the FER-2013 dataset.

The model was initialized using pre-trained weights from ImageNet and then
adapted to the specifics of the FER-2013 dataset by freezing all convolutional layers and
replacing the final classification layer with a new fully connected layer featuring seven
outputs corresponding to the FER-2013 emotion classes. The data preparation process
was identical to that used with the VGG16 model: images were resized to 224 x224 pixels
and normalized using the RGB means and standard deviations from ImageNet. The
dataset was split into training (80%) and validation (20%) subsets. ResNet was trained
for 10 epochs using the Adam optimizer (learning rate: 0.0001), without additional
regularization. A batch size of 32 was applied. The training strategy prioritized
simplicity and consistency with the VGGI16 configuration, enabling a reliable
comparative analysis. During each epoch, classification accuracy was monitored on both
the training and validation sets. After training, the model’s performance was evaluated
based on accuracy, precision, recall, and F1-score, and a confusion matrix was generated.
The results (table 4) allowed for an assessment of ResNet’s effectiveness in recognizing
facial emotions under conditions of limited data and resources.

The next model analyzed was the Long Short-Term Memory network, an
extension of classical Recurrent Neural Networks, designed to retain long-term temporal
dependencies in sequential data (Hochreiter & Schmidhuber, 1997: 1744). In the context
of emotion recognition, this model enables the analysis of image sequences (e.g., video
recordings), allowing for the capture of emotional expression dynamics — a key factor
in psychological diagnostics and the analysis of online interactions. The LSTM network
was combined with a convolutional feature extraction network (e.g., CNN), where the
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CNN served as the feature extractor. The extracted vector representations of each frame
(typically from the final convolutional layers) were then processed by the LSTM layers
to identify temporal emotional changes. A single-layer LSTM structure was used,
consisting of 128 units and a dropout rate of 0.3. A fully connected output layer followed,
producing seven outputs corresponding to the emotion classes. Instead of using
individual static images, the data were transformed into short sequences of images (e.g.,
five consecutive frames). Each frame was normalized according to ImageNet RGB means
and standard deviations and resized to 224x224 pixels. The sequences were class-
balanced across emotion categories. The model was trained for 15 epochs using the
Adam optimizer (learning rate = 0.0001), the CrossEntropyLoss function, and a batch
size of 16. Validation accuracy was monitored during training, and a full evaluation of
classification quality was conducted upon completion. The LSTM model enabled the
capture of the sequential nature of emotions, which is particularly valuable in the
analysis of video recordings, online conversations, and therapeutic observations (table
5). This model allowed for the identification of subtle changes in facial expressions that
might be missed by traditional convolutional models.

Table 5. Configuration of the LSTM-Based Model for Temporal Facial Emotion Recognition

Configuration Element Description

Architecture Long Short-Term Memory (LSTM)
Integration with CNN Yes - CNN as feature extractor
Number of LSTM layers 1

Number of LSTM units 128

Dropout 0.3

Final output layer Fully connected (7 emotion classes)
Input data type Image sequences (e.g., from video)
Input frame size 224 x 224 px

Number of frames per sequence 5

Batch size 16

Number of epochs 15

Optimizer Adam

Learning rate 0.0001

Loss function CrossEntropyLoss

Evaluation metrics Accuracy, Precision, Recall, F1-score, Confusion Matrix

Note. Design of the LSTM-based model used for analyzing temporal dynamics of facial emotions.

RNNs are among the oldest yet most foundational architectures for sequence
processing in the field of machine learning. In this study, a basic version of an RNN was
applied to analyze sequences of facial images for the purpose of emotion recognition.
Despite its limitations, this model is capable of capturing basic temporal dependencies
in sequential image data, which may be useful in analyzing short-term emotional
dynamics. The RNN model received as input a sequence of feature vectors extracted
from the output of a CNN feature extractor (e.g., convolutional layers). Unlike LSTM,
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classical RNNs lack gating mechanisms to regulate information flow, making them more
susceptible to the vanishing gradient problem but also less resource-intensive and faster
to train. A single-layer RNN with 64 units was implemented, followed by a fully
connected output layer with seven outputs corresponding to the emotion classes. The
input data consisted of five consecutive frames from image sequences (e.g., extracted
from video recordings). Each frame was resized to 224x224 pixels and normalized
according to ImageNet standards. The model was trained for 10 epochs using the Adam
optimizer (learning rate = 0.0001), the CrossEntropyLoss function, and a batch size of 16.
During training, classification accuracy and validation loss were monitored (table 6).
Although RNNs are less advanced than LSTM networks, they enabled a preliminary
analysis of emotional changes over time. This makes them suitable for projects requiring
basic sequence analysis or for use in resource-constrained environments such as mobile

devices or educational systems.

Table 6. Configuration of the RNN-Based Model for Sequential Facial Emotion Recognition

Configuration Element Description

Architecture Recurrent Neural Network (RNN)
Integration with CNN Yes - CNN as feature extractor
Number of RNN layers 1

Number of RNN units 64

Final output layer Fully connected (7 emotion classes)
Input data type Image sequences (e.g., from video)
Input frame size 224 x 224 px

Number of frames per sequence 5

Batch size 16

Number of epochs 10

Optimizer Adam

Learning rate 0.0001

Loss function CrossEntropyLoss

Evaluation metrics Accuracy, Precision, Recall, F1-score, Confusion Matrix

Note. Structure and training setup of the RNN model applied to sequential facial emotion data.

The Histogram of Oriented Gradients is a classical feature extraction technique
that was widely used in image analysis prior to the deep learning era. In the context of
facial emotion recognition, HOG allows for the capture of local edges, contours, and
structural patterns of the face that may be characteristic of specific emotional
expressions. The HOG method divides the image into small, regular cells (e.g., 8x8
pixels), within which a histogram of gradient orientations — i.e., brightness changes —
is computed. These histograms are then normalized across larger blocks (e.g., 2x2 cells),
improving robustness to lighting variations. The result is a feature vector that represents
the structure of the image in a form suitable for classification. In this study, a standard
HOG configuration was used: 8x8 cells, 2x2 blocks, and 9 histogram bins. Feature
extraction was performed using the scikit-image library. The resulting feature vectors
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were classified using a Support Vector Machine (SVM) classifier with a radial basis
function (RBF) kernel. Images from the FER-2013 dataset were rescaled to 64x64 pixels
(due to SVM classifier constraints) and processed using HOG. The data were split into
training and test sets in an 80/20 ratio. The SVM classifier was trained using default
parameters: C=1.0, gamma='scale’, with the RBF kernel. After training, classification
performance was evaluated using standard metrics: accuracy, precision, recall, F1-score,
and a confusion matrix (table 7). Although HOG is an older technique compared to deep
learning models, it offers high interpretability and can be implemented on devices with
limited computational power. Its main limitations include low tolerance to data
variability (e.g., different face orientations) and the lack of self-learning capability.
Nevertheless, in controlled or educational environments, it may provide a fast and

efficient solution for basic emotion analysis.

Table 7. Configuration of the HOG-Based Method for Classical Facial Emotion Recognition

Configuration Element Description

Method Type Histogram of Oriented Gradients (HOG)
Cell size 8 x 8 pixels

Block size 2 x 2 cells

Number of histogram bins 9

Histogram normalization L2-Hys

Input image size 64 x 64 px

Feature extraction scikit-image library

Classifier Support Vector Machine (SVM)

SVM parameters C=1.0, gamma='scale', RBF kernel

Data split 80% training, 20% test

Evaluation metrics Accuracy, Precision, Recall, F1-score, Confusion Matrix

Note. Description of the HOG-based feature extraction method combined with SVM, used in the authors’
experiments.

The Haar-like features method is one of the earliest and simplest techniques used
in image analysis, based on intensity differences between adjacent regions. Popularized
by the Viola-Jones face detector, it remains a fast and efficient way to detect structural
features, including facial patterns. Haar features use rectangular masks to compare
brightness areas, such as contrasting the forehead with the eyebrows. Their
computational efficiency results from integral images, enabling rapid pixel sum
calculations. In this study, several hundred Haar features were generated using
OpenCV, and classification was performed using the AdaBoost algorithm — an
ensemble method that improves accuracy by combining weak learners. Images from the
FER-2013 dataset were resized to 48x48 pixels and processed into integral images.
Feature vectors were classified after 50 AdaBoost iterations. Evaluation included
accuracy, precision, recall, and F1-score metrics (Table 8).
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Although considered outdated compared to CNN or HOG methods, Haar-like features
offer advantages in highly resource-constrained environments, such as embedded
systems or mobile applications. Their main strength lies in speed, with limitations in
robustness to data variability and complex pattern recognition.

Table 8. Configuration of the Haar-Like Features Method for Classical Facial Emotion

Recognition
Configuration Element Description
Method Type Haar-like features
Operating principle Analysis of brightness differences between rectangular
regions
Feature extractor OpenCV Haar cascades
Input resolution 48 x 48 px
Image representation Integral image
Number of features Several hundred automatically generated features
Classifier AdaBoost (ensemble method)
AdaBoost parameters 50 iterations, default loss function
Data split 80% training, 20% test
Evaluation metrics Accuracy, Precision, Recall, F1-score

Note. Implementation of the Haar-like features approach with AdaBoost classifier in the context of
classical FER.

All experiments were conducted on a single-workstation rig equipped with an
AMD Ryzen 9 9900X CPU, 32 GB DDR5-6000 RAM, and an NVIDIA GeForce RTX 3090
GPU (24 GB GDDR6X). The host operating system was Windows 11 Pro (23H2), and the
main software stack included Python 3.13, PyTorch 2.7.0, TorchVision 0.21, and CUDA
12.6. During the training and evaluation procedures, the system consistently operated
under 14 GB of VRAM usage and did not exceed 320 W of board power. The entire facial
emotion recognition process — from image input to final evaluation — followed a
structured and repeatable workflow, ensuring methodological consistency. This
workflow is illustrated in Scheme 1.
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Scheme 1. Workflow for Facial Emotion Recognition Model Training and Evaluation.
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Note. Scheme created by the authors based on the experimental setup.

Results

The evaluation of the facial emotion recognition models was conducted using
several complementary metrics: accuracy, precision, recall, F1-score, and training time.
These measures offer different perspectives on model performance, capturing not only
overall correctness but also sensitivity to positive instances and the balance between
precision and recall. In machine learning, an epoch refers to a complete cycle in which
the model processes the entire training dataset. After each epoch, the model updates its
internal parameters (weights) and, if more epochs are set, begins a new cycle with
updated weights (Das & Das, 2023). Table 9 presents the models” overall accuracy,
weighted averages of precision, recall, Fl-score, and the time required to complete
training. Precision in this context reflects how many of the predicted positive cases were
correct; it is calculated by dividing true positives (TP) by the sum of true positives and
false positives (FP) (Hersh, 2005). Recall indicates how many actual positive cases were
correctly identified by the model, calculated by dividing TP by the sum of TP and false
negatives (FN) (Hersh, 2005). The F1-score, which is the harmonic mean of precision and
recall, provides a single measure balancing these two aspects, and gives insight into the
model’s ability to identify emotions accurately and consistently (Hersh, 2005).

Table 9. General Performance Metrics of FER Models

Model Accuracy ‘1;\1{22%5};?: Avg ‘l:,eeclfllllted Avg rllf;%l;zd Avg Time (s)
ResNet 0.44 0.42 0.44 0.40 680
VGG-16 0.60 0.60 0.56 0.59 648
HOG 0.44 0.43 0.44 0.43 155
RNN 0.37 0.30 0.29 0.27 465
LSTM 0.44 0.43 0.44 0.42 494
Haar 0.56 0.55 0.56 0.55 300

Note. Summary of model classification performance based on weighted averages and computational time.
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Among the evaluated models, VGG-16 achieved the highest overall accuracy
(0.60) and weighted F1-score (0.59), indicating a strong balance between precision and
recall. Haar-based detection also yielded robust results (accuracy: 0.56), with notably
lower training times (300 seconds), which highlights its efficiency in resource-
constrained environments. In contrast, the RNN model demonstrated the weakest
performance across all metrics, achieving the lowest weighted Fl-score (0.27) and
accuracy (0.37), suggesting limitations in recognizing facial emotions effectively.
Additionally, the LSTM model, although showing better performance than the RNN,
exhibited only moderate improvements, indicating that sequential architectures might
require further tuning for optimal FER performance.

A more detailed analysis focusing on recognition performance for specific
emotions is presented in Table 10. This table identifies the emotion best recognized
(based on precision and recall) and the least effectively detected emotion (based on
recall) for each model, providing further insight into their individual strengths and
weaknesses across emotional categories.

Table 10. Summary of Facial Emotion Recognition (FER) Model Performance

Model Overall Accuracy Best P.recision Best R.ecall Worsf—Recognized
(Emotion) (Emotion) Emotion (Recall)

ResNet 0.44 surprise (0.72) happiness (0.71) disgust (0.03)

VGG16 0.6 disgust (0.79) happiness (0.88) fear (0.34)

HOG 0.44 happiness (0.57) happiness (0.72) disgust (0.2)

RNN 0.37 surprise (0.52) happiness (0.72) fear (0)

LSTM 0.44 surprise (0.62) happiness (0.73) fear (0.16)

Haar 0.56 neutral (0.76) happiness (0.78) fear (0.37)

Note. Summary of classification performance across all tested models, based on the results obtained in the
present study.

Among the tested models, VGG-16 again stood out, achieving the highest
precision (0.79 for disgust) and recall (0.88 for happiness), confirming its capacity to
recognize distinct emotional patterns effectively. Haar cascades performed well for
neutral and happiness emotions, balancing speed and classification performance. The
ResNet model demonstrated good precision for surprise (0.72) and recall for happiness
(0.71), but struggled considerably with disgust (recall: 0.03), indicating challenges in
capturing more subtle expressions. Classical feature-based methods, such as HOG,
achieved stable but modest results, while RNN and LSTM models displayed weaker
recognition rates, particularly for fear, with RNN failing to recognize it at all (recall: 0.00).

To further explore model performance, three additional visual analyses were
conducted.
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Figure 1. F1-score across FER models by emotion category
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Figure 2. F1-score for each emotion by model, including average performance
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Figure created by the authors to compare average and emotion-specific scores.

Figure 3. Model accuracy as a function of training time
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Figure created by the authors to show the trade-off between accuracy and time.
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Figure 1 presents Fl-scores across emotional categories for each model,
highlighting that happiness and surprise were generally easier to recognize, whereas
fear and disgust remained more difficult for all architectures. Figure 2 aggregates F1-
scores across models, with the bold curve representing mean performance. VGG-16 and
LSTM consistently showed higher overall recognition abilities compared to the other
models. Figure 3 illustrates the trade-off between model accuracy and training time,
showing that while VGG-16 and Haar achieved better classification results, their training
times were significantly longer compared to lightweight methods like HOG.

Discussion

The comparative analysis revealed that certain emotions, such as happiness and
surprise, were generally recognized with higher accuracy across models, while others,
including fear, disgust, and anger, remained significantly more difficult to classify.
These patterns, also observable in Figures 1 and 2, reflect the inherent ambiguity and
lower facial distinctiveness of some emotional expressions. Notably, even advanced
deep learning models struggled to detect these more nuanced emotions consistently.
Moreover, as highlighted in Figure 3, achieving high accuracy often came at the cost of
extensive training time, raising important questions about the practical feasibility of
deploying complex FER systems in low-resource environments. These observations
underscore the need to match model complexity with the intended application context —
balancing performance, efficiency, and ethical considerations.

Facial Emotion Recognition systems are gaining increasing significance across a
variety of domains, from education and healthcare to smart home technologies. In
education, FER can be used to monitor students” emotions in real time—allowing
teachers to assess whether a student is frustrated, bored, or engaged and tailor their
teaching methods accordingly (Khalfallah & Ben Hadj Slama,, 2015: 276). One example
includes a JavaScript-based system that tracks facial landmarks and assesses emotional
responses during remote laboratory sessions (Khalfallah, 2015: 279). In the workplace,
FER helps monitor employees’ moods, supporting psychological well-being and
productivity. For instance, Raspberry Pi-based systems can recognize real-time emotions
such as joy, sadness, or anger (Rathour et al., 2021: 4). In smart home environments, FER
is used to automate surroundings—e.g., by changing a television channel or lowering
the volume upon detecting user frustration (Hossain & Muhammad, 2017: 2283). In
healthcare, FER is applied in the diagnosis and monitoring of mood disorders such as
depression, including in home settings. This technology may facilitate early detection of
relapses and assessment of treatment effectiveness (Guo et al., 2024: 6). Recent
advancements also include the development of contactless FER systems, which utilize
radar sensors, thermal cameras, or Wi-Fi wave analysis instead of RGB cameras. These
allow for emotion detection even without direct facial visibility (Khan et al., 2024: 13).

The results obtained in this study suggest that FER systems can significantly
support remote work —provided that the technology is appropriately matched to the
organization’s needs and team structure. The choice of model should not be based solely
on classification accuracy but also on computational requirements, robustness to
environmental noise, and real-time performance capabilities. For example, the stable
VGG16 architecture proves effective in educational settings where teachers conduct
online classes and need to monitor student engagement without relying on high-
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performance hardware. Due to its predictable structure and consistent results, VGG16
also performs well in organizations that conduct remote training or professional
development sessions—especially where capturing clear emotional states such as
frustration, joy, or boredom is essential.

The more complex ResNet architecture, with its use of residual connections,
proved effective in capturing subtle facial variations. It may be successfully applied in
large corporate environments where real-time emotion analysis supports not only
mental well-being but also the early detection of burnout or work overload. Such
systems may also be valuable for UX and Al research departments, where users’
emotional reactions to new digital products are evaluated. Although ResNet requires
significant computational resources, it enables deep emotion analysis in visually and
culturally diverse settings.

For organizations relying on intensive synchronous communication—such as
therapeutic teams, consultants, coaches, or customer service units —the LSTM model
may be more appropriate. It enables temporal analysis of emotions, capturing mood
changes throughout the course of an interaction. This makes it possible not only to detect
emotions at a given moment but also to identify critical turning points —such as when a
client begins to experience irritation or anxiety. LSTM is particularly valuable in
analyzing continuous interactions, such as video calls, psychological support sessions,
or online coaching.

Organizations without access to advanced technological infrastructure, but with
a need for speed and interpretability, may benefit from classical methods like Histogram
of Oriented Gradients. Due to their relatively low computational requirements, such
methods are ideal for small businesses, NGOs, or educational institutions in developing
countries, especially when emotion analysis is conducted on recorded material rather
than in real time. HOG can also be used in basic feedback systems after remote meetings,
aimed at assessing the general emotional tone of participant responses.

In cases where maximum responsiveness and minimal resource consumption are
essential —such as in smart homes or mobile devices — techniques like Haar-like features
combined with AdaBoost classifiers may be employed. These systems can respond
instantly to the user's emotions, e.g., by adjusting lighting or music based on mood.
While their performance does not match that of deep learning models, their simplicity
and efficiency make them viable for implementation where other methods may be
impractical.

Recurrent Neural Networks (RNNs), although less advanced than LSTMs, may
be suitable for projects requiring basic emotion analysis over time—particularly in
mobile applications, chatbots, or educational systems, where limited resources and fast
processing are critical. Their simplicity may be an advantage for rapid prototyping or
deploying “good enough” solutions that work effectively in the moment. The diversity
of FER methods not only demonstrates the technological potential for emotion analysis
but also underscores the importance of a cautious, context-aware implementation
strategy. The choice of model should always be preceded by an assessment of technical
constraints, organizational goals, and the specific nature of remote work in a given team.
When applied thoughtfully, FER systems can support emotional diagnostics and
contribute to building healthier, more balanced, and human-centered work
environments.
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Despite the promising results and the broad range of methods applied, this study
has several important limitations that should be considered when interpreting the
findings or attempting to generalize them. First, the FER-2013 dataset —although widely
recognized as a benchmark in emotion recognition research — has structural and content-
related limitations. Its grayscale images are standardized to a low resolution (48x48
pixels), which reduces the ability to capture subtle facial nuances — especially for more
complex or less distinct emotions such as surprise or disgust. Moreover, the dataset lacks
ethnic diversity; most facial images are of white individuals, which may result in models
learning emotion patterns that are typical for this demographic while marginalizing
facial expressions from other populations. This raises concerns about the generalizability
of results to demographically diverse educational or workplace settings.

A second limitation of the study was the simplified experimental configuration,
driven by the need to conduct research under constrained technical conditions. All
models were trained for a relatively short time — only 10 to 15 epochs — without applying
performance-enhancing techniques such as data augmentation, fine-tuning, dynamic
learning rate adjustments, or advanced regularization strategies. While this approach
allowed for the efficient comparison of multiple architectures under unified conditions,
it may have limited the models” actual potential. This is particularly relevant for more
complex architectures, such as ResNet or LSTM, which typically require longer training
periods and precise hyperparameter calibration to achieve optimal performance.

Another important constraint was the computational limitation, which
necessitated the exclusion of more advanced architectures such as ResNetb0,
EfficientNet, or deeper LSTM variants. The study was conducted using locally available
hardware, which limited both the experimentation with larger models and their testing
in production-like environments —e.g., real-time emotion recognition using full video
datasets. As a result, the study assumed more of a comparative testing character, similar
to educational or prototyping settings, rather than a full-scale industrial validation.

All of these limitations should be taken into account when interpreting the
results. The project’s goal was not to achieve the highest possible classification accuracy,
but rather to explore the practical viability of various approaches in conditions similar
to those faced by research, therapeutic, or educational teams without access to advanced
computational resources. Although the results are promising, they serve as a starting
point for further research—particularly studies involving more diverse datasets,
extended training, and models tailored to specific cultural and technological contexts.

Despite the increasing accuracy and availability of facial emotion recognition
(FER) systems, their application raises significant ethical concerns—especially in
contexts where decisions based on emotion recognition may have real consequences for
individuals. Even when such technologies are deployed with good intentions, they may
infringe upon fundamental values such as privacy, autonomy, equality, and human

dignity.

One of the most frequently cited issues is the violation of emotional privacy.
Emotions are inherently personal, and their recognition — especially when done without
a person’s awareness or consent—can constitute a form of surveillance. Cavoukian
emphasizes that privacy is not about hiding information but about having control over
what is shared and with whom. FER systems deployed in workplaces, educational
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platforms, or public spaces—without the informed consent of users —may undermine
this right, contributing to a sense of continuous monitoring (Cavoukian, 2019: 5).

Another serious concern involves system errors and algorithmic bias. Research
has shown that FER systems are more likely to misclassify the emotions of individuals
with darker skin tones —for instance, labeling neutral expressions as negative emotions
such as anger (Buolamwini & Gebru, 2018: 4). This occurs in part because the training
datasets used to build neural networks are predominantly composed of images of white
individuals. Consequently, these systems may perpetuate stereotypes and lead to unjust

outcomes in workplaces, educational institutions, or even legal proceedings trajectory
(Boyd & Andalibi, 2023: 5).

Even high-performing systems are not without significant challenges. Emotion
recognition is a probabilistic process, and the notion that an algorithm can "know the
truth" about a person's emotional state is heavily contested in scientific literature
(Barrett, 2017: 12). Studies show that emotions are deeply dependent on cultural, social,
and psychological contexts —dimensions that algorithms are fundamentally incapable
of fully capturing (Barrett, 2017: 18). Moreover, the illusion of objectivity may lead to
FER results being treated as infallible, thereby marginalizing human voice and limiting
opportunities for appeal (Keyes, 2019: 14). FER technologies also carry the risk of
function creep —the gradual broadening of a system’s use beyond its original intent.
Systems initially designed to monitor employee well-being may later be used to assess
productivity, diagnose mental illnesses, or—in the most controversial scenarios—
predict criminal tendencies (Mohammad, 2022: 244). Such applications not only
oversimplify the complexity of human behavior but also risk pathologizing natural
emotional responses and relinquishing control over how and by whom results are
interpreted (Keyes, 2019: 15). FER can also distort power dynamics in professional
relationships. Employees subjected to continuous emotional monitoring may experience
increased stress, pressure to conform emotionally, and uncertainty about how results
may impact their career trajectory (Boyd & Andalibi, 2023: 5) In such contexts, the notion
of “voluntary consent” becomes questionable, as the realistic possibility of refusal is
often non-existent (Buolamwini & Gebru, 2018: 5).

Ultimately, the advancement of FER raises the question of whether every domain
of life should be automated. Emotions are profoundly human phenomena —shaped by
history, experience, and socio-cultural relationships. Automating their recognition
invites not only technical questions but also philosophical ones: Can a machine truly
understand a human being? Should it? As Mohammad (2022: 246) points out, the key
issue is not whether we can, but whether we should. Ethical implementation of FER
requires more than technical safeguards. It demands participatory design principles,
system transparency, acknowledgment of cultural and social diversity, and —most

importantly — humility in the face of technological limitations and human complexity
(Mohammad, 2022: 247).

Future research should prioritize the use of more diverse datasets—those that
include color images in higher resolution and feature individuals from a wide range of
cultural and ethnic backgrounds. Additionally, the scope of analysis should be expanded
to include multimodal data —combining facial expressions with vocal tone, gestures, or
physiological signals —to enhance emotion recognition accuracy in complex, real-world
communicative situations. A compelling direction would also be to investigate the
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behavioral effects of FER interfaces themselves—for example, whether awareness of
being monitored alters the way people express emotions.

Conclusion

This analysis has demonstrated that facial emotion recognition (FER)
technologies can serve as a valuable complement to diagnostic tools in the context of
remote work and psychological well-being. While classical methods offer fast and cost-
effective implementation despite certain limitations, deep learning approaches provide
significantly higher accuracy and flexibility in dynamic conditions. However, despite
growing technological accessibility, further research is necessary to assess these systems’
effectiveness in real-world environments and to ensure their ethical implementation.
Future directions should consider integrating FER models into multimodal systems and
developing tools that support mental well-being across various organizational levels.

Both our study and the review of existing literature point to a clear potential for
applying FER as a technology supporting remote work environments. Most importantly,
such systems can systematically and more objectively identify early symptoms of
declining mental well-being. This enables the implementation of preventive actions—
such as recommending breaks, adjusting work rhythms, facilitating communication
with the team or supervisor, or, in more advanced scenarios, signaling the need for
psychological consultation. Potential benefits also include adapting the work
environment to a user’s current emotional state, which may improve concentration,
reduce stress, and even enhance efficiency and job satisfaction.

Nevertheless, it is critical to recognize that FER technology touches upon one of
the most intimate aspects of the human experience —emotion. Introducing such systems
into the workplace carries the risk of both technological and social abuses. The most
serious of these is the potential instrumentalization of emotion —treating it as another
productivity metric rather than an authentic expression of an individual’s mental state.
Particularly concerning are potential abuses of power, where emotional data is used
without the employee’s informed consent or beyond the original purpose for which it
was collected. Examples include using FER to evaluate loyalty, monitor motivation in real
time, or even select candidates during recruitment based on their emotional responses.

Several other concerns also emerge: technical ones—related to classification
accuracy and potential errors; psychological ones—concerning the impact of constant
monitoring on well-being and the authenticity of emotional expression; and social
ones—such as cultural differences in emotional expression, which may lead to
algorithmic biases and misinterpretations. Moreover, there is a tangible risk of function
creep —expanding the original use of FER systems into ethically questionable areas, such
as behavior control, diagnosing mental disorders without consent, or even profiling
individuals based on perceived emotional risk.

Therefore, as authors, we recommend that any implementation of FER
technology in work settings—especially remote environments—be preceded by
systemic regulation. This should include not only legal frameworks but also ethical
standards, codes of conduct, auditing mechanisms, and a genuine option for individuals
to opt out without facing negative consequences. Only an approach based on
transparency, voluntariness, and participatory design can ensure that these technologies
serve to support humans rather than control them.
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This study contributes to the development of practical FER applications in the realities
of remote work, demonstrating that even simplified models—when appropriately
tuned — can effectively support the monitoring of psychological well-being without the
need for advanced or costly systems. In the future, research on multimodal FER systems,
combining visual data with voice, text, or physiological signals, may prove particularly
valuable. Such approaches could not only improve the accuracy of emotion recognition
but also reduce the risk of misinterpretation stemming from the one-sided analysis of
facial expressions.

Technology that can perceive emotions has the potential to become a powerful
ally — provided it is accompanied by attentiveness to the human being.
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